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The resu l t s  of the Mariner  6 and 7 experimental investigations have been 

analyzed for information relative to the problem of assess ing  the likely 

geochemistry of the surface of Mars .  Studies of the television pictures  

revea l  a r e a s  of the planet apparently very  old and of a probable igneous- 

meteori t ic  composition. Other a r e a s  of the planet show evidence of 

extensive active processes  which change surface features  and in these 

a r e a s  surface composition may be of a sedimentary nature.  Infrared 

spectrometer  data point to a si l icate composition with some evidence for  

limonite o r  other i ron  oxides. However, no technique i s  presently 

available for unambiguous determination of even semi  -quantitative geo - 
chemical relationships on Mars  without accomplishing a landing on the 

planet 's  surface.  

Rock and minera l  composition data have been collected for ear th  rocks,  

meteori tes ,  and lunar samples.  Combining this  information with present  

information on chemical abundances in the sun and s t a r s ,  i t  has been possible 

to derive the following l i s t  of elements in their  mos t  likely order  of abundance 

by weight for an a rb i t r a ry  body in the so lar  system: 0 ,  Si, Fe,  Mg, Ca, 

Al, Na, S, Ti, Cr ,  Mn, K, and Ni, These elements  a r e  discussed individually 

in t e r m s  of their  geo- and cosmo-chemistry.  A geochemical analysis of the 

surface of Mars  would have many ve ry  significant scientific benefits: 

(1) complement life-detection experiments,  (2 )  obtain data essential  to 

the under standing of the geological history of Mars ,  and ( 3 )  provide 

indispensable information relative to the origin and his tory of the so lar  

system. An x - ray  fluorescence spectrometer  could provide the des i red  

analysis of the abundant elements a s  par t  of the Viking mission to Mars .  



This investigation was conducted in the Radiation Instrumentation Laboratory 

a t  Avco/ ~ u l s a  under the technical direction of Dr. B. C. Clark,  Valuable 

contributions to the success  of the investigation were made by A. A. Sanders.  

We also wish to acknowledge important contributions by Prof.  A. K. Baird 

of Pomona College, Claremont,  California, to sections 2. 0, 3 .  0 and 4. 0 

of this report .  



The recent  accomplishments of Mar iners  6 and 7 in collecting data 

on the atmospheric  and surface charac ter i s t ics  of Mars  have added 

immensely to our knowledge of this planet. '  Many advances have a lso  

been made in ground-based measurements  of the propert ies  of Mars  

during the pas t  two years .  Analysis of lunar samples has provided 

a wealth of new information concerning the surface composition of 

an ex t r a t e r r e s t r i a l  object. It i s  therefore t imely that a systematic  

study be performed to make prel iminary est imates  of the surface 

compositiorfKand surface propert ies  of the planet Mars .  

::: In this repor t ,  we have elected to give a l l  concentrations in t e r m s  
of weight per cent of the pure element,  - 



2. 1 Television Experiment  

Analysis of the Mariner  6 and Mariner  7 photographs of Mars  has  

conclusively demonstrated that the planet has  surface features  

different f rom both the E a r t h  and the Moon. The finding that there  

a r e  no features  relatable to Earth- l ike tectonism on Mars ,  and the 

corollary that la rge  a r e a s  have remained unchanged for billions of 

yea r s ,  i s  probably the most  important resul t  of this experiment,  

Implications of this ma jo r  finding a r e  the greatly reduced chances 

of existence of life on the planet and a renewed in teres t  in the body 

a s  an exhibit of planetary evolution different f rom anything so far 

known in the solar  system. 

2.1.1 E a r t h / ~ o o n / ~ a r s  Comparisons 

2. 1.1. 1 Ea r lv  Stages of Development 

M a r s  appears  to conform to the concept of an  accret ionary origin by 

comparisons of lunar uplands with mart ian c ra t e red  te r ra ins .  The 

ear ly  his tor ies  of these bodies a r e ,  therefore,  probably s imilar .  

Subsequent events ( s e e  below) have modified the c r a t e r e d  regions 

on both, but to a different extent on Mars.  Despite these changes 

both planets a r e  totally different f rom Ear th  where accretion ( i f  the 

formational process)  was  followed by differentiation into compositional 

shells.  Most lunar  information supports a concept of a homogeneous 

inter ior .  Murray,  e t  a l ,  (Mu-71) point out that the s t ruc tura l  

propert ies  of lunar and mar t ian  crus ts  must  be s imi lar  to account 

fo r  the corresponding development of polygonization of la rge  c r a t e r s  

on both, A11 evidences for such a developmental stage on E a r t h  have 

been obliterated by differentiation, tectonic and erosional processes  

continuirrg for billboris o f  ycaabs,  



Arn additional feature apparently belonging to an ear ly  stage of Mars  

his tory i s  i t s  "featureless terrain",  best  exemplified to date by 

pictures of Helas. This topographically low basin has  been marginally 

a l te red  by c r a t e r s  indicating i t s  ancient age, but the featurelessness  

of i t s  inter ior  must  be ascr ibed  to some form of subsequent modifica- 

tion ( see  below). These mar t ian  a r e a s  of exceptional smoothness, 

whatever their  mode(s) of origin, a r e  apparently unique with no 

analogues on E a r t h  o r  the Moon. 

2. 1 .1 .2  Subsequent Stages of Development 

With a sample of three  (Earth,  Moon, Mars )  the so lar  sys tem so far  

exhibits ve ry  contrasting se t s  of planetary evolution. Only the E a r t h  

has  passed through s tages of c rus ta l  differentiation, tectonism and 

formation of oceans and a dense atmosphere,  with i ts  concomitant 

surface erosion and recycling of rock mater ia l ,  

In contrast ,  a l l  lunar evidence suggests a present  day development 

unchanged f rom the la te  accretionary stage except for extensive and 

continued surface modification by impact f rom without and the develop- 

ment  of a thick regolith of shat ter-debris .  On Mars ,  however, l a rge  

c r a t e r s  representat ive of the la te  accret ionary stage a r e  s t i l l  present  

and no "young" la rge  c r a t e r s  (analogous to the lunar  Copernicus) 

have been found. In contrast ,  Mars  exhibits a relatively young s e t  

of surface s t ruc tures ,  t e rmed  "chaotic terrain",  not found on either 

the Moon or  the Earth.  These features  have developed a t  the expense 

of c ra te red  t e r r a in ,  taking the form of slump and collapse s t ruc ture  

with l i t t le internal o rde r ,  The origin of the chaotic t e r r a in  i s  unknown. 

Speculation involves dune mater ia l ,  volcanic ejecta sheets and collapse 

due "t withdrawal of lava, If the la t ter  idea is  cor rec t ,  this might 

suggest that Mars  is now- entering a stage of development reached 



millions or billions of years ago by Earth in which internal processes 

a r e  coming into play; the Moan never  attained this stage. 

2. 1.1.  3 Late s t  Stages of Development - 

The Ear th  and the Moon can be thought of a s  in two stages,  continuing 

for the past  severa l  hundreds of millions of yea r s  in each, of relative 

constancy. On the fo rmer  planet tectonism and atmospheric  processes  

a r e  dominant; on the la t te r ,  impact  processes .  Mars ,  however, may 

be in a t ransi tory state a s  evidenced by the possible origins for the 

chaotic t e r r a in  through internal geothermal processes .  Perhaps this 

feature of M a r s  and i ts  primitive CO atmosphere a r e  related. 
2 

Certainly the l a t t e r  does provide the means for aeolian p rocesses  

to be operative to some degree on the Martian surface.  Mariner  6 

and 7 resu l t s  do indicate substantial  horizontal re-distribution of 

mater ia l  on the floors of l a rge  c ra t e r s .  Photos a l so  indicate that, 

compared to lunar te r ra in ,  Martian topography i s  greatly subdued. 

Appeal to aeolian proce s ses ,  however, is complicated by the apparent 

total  lack of physical o r  chemical means  to break up Mart ian bedrock 

in a fashion to prepare  i t  for  t ransport .  As Murray, e t  al ,  (Mu-71) 

point out, the mechanism of effective weathering on Mars  remains  

unknown. 

2. 2 Infrared Spectrometer  Experiment 

F r o m  ground-based observations of the spectral  reflectivity of the 

Mart ian surface,  i t  was ear ly  concluded that the surface m a y  be 

composed of limonite. The spec t ra  have also been likened to finely 

divided basalt  and to the polymer carbon sub-oxide ( P l - 6 9 )  which i s  a 

possible photochemical product of the Martian atmosphere.  The 

Mariner 6 and 7 IR data does not allow one to draw unambiguous 

co~~clusians concerning the surface c:omposition, altho-iigh i.t does 



provide the basis for excluding certain possibilities ( O c  - 701, Thus, 
the spec t ra  show no evidence of absorption by carbonates,  

ruling out an  extensive carbonate surface layer .  Likewise, a l l  

spec t ra  exhibit a strong sil icate band, thus ruling out an extensive 

non-silicate covering such as  carbon sub-oxide. The spec t ra  a r e  

not inconsistent with a l imonite-basalt  mixture,  although they a r e  

not sufficiently definitive to allow one to deduce such a composition. 

On the other hand, the experimenters  (Oc-70) conclude that there 

definitely i s  indication of some fer rous  i ron  on the Martian surface.  -- 



3 . 0  PROBABLE CONCENTRATIONS 01;' MAJOR AND MINOR ELEMENTS 

3 ,  1 Geo - and Cosrno -chemis t ry  of Major and -Minor Elements  --- 

The f i r s t  attempt to est imate the relative abundance of the elements  

in the universe was made a t  the turn  of the century. Since then a 

number of investigators have worked to refine our knowledge of this  

important distribution function. Its  importance lie s,  of course,  in 

i t s  usefulness in testing various theories  of the genesis of the so lar  

sys tem and the universe. Such data a r e  generated in two ways: 

F i r s t ,  by careful spectrographic analysis of the sun, cer tain s t a r s ,  

and the Orion nebula; Second, by chemical analysis of meteori tes .  

In the la t te r  case,  chondritic meteor i tes  a r e  usually the p re fe r red  

variety since their  me ta l  content distribution closely matches that 

deduced f rom the spectroscopic observations of the sun. Also, 

isotopic dating of chondrites infers  a very  g rea t  age, strengthening 

the belief that they represent  f ragments  of pr imordial  matter .  

The mos t  recent  compilation of elemental abundances using a combination 

of both approaches was made by Sue s s  and Urey (Su-56). However, 

m o r e  recent  and probably m o r e  accurate  compilations have been 

made  by Aller (Al-61) who re l ies  very heavily upon spectroscopic 

data and by Cameron (Ca-67) who chooses to base his resu l t s  mainly 

upon analyses of Type I carbanaceous chondrites. In general,  the 

work of the la t te r  two authors ag rees  quite satisfactorily,  with the 

mos t  notable exception being the inferred abundance of iron. Whereas 

Cameron believes i ron to be m o r e  abundant than silicon by a factor of 

1.8,  Aller deduces from observations of the sun that the abundance 

of i ron i s  only one-fourth that  of silicon by weight, 



The two most striking charac ter i s t ics  of a l l  cosmic abundance 

schemes a re :  (1) the extremely high abundances of elements  of 

low atomic number compared to those of high atomic number,  and 

(2) the seesaw effect, sometimes known a s  the Oddo-Harkins rule,  

whereby elements of even atomic number a r e  present  in much grea ter  

abundance than their  neighboring odd atomic number elements. This 
P 

la t ter  effect i s  very striking and very  apparent,  since rat ios  between 

adjacent elements a r e  often of the o r d e r  of 10 to 100. 

The ma te r i a l s  which may  be considered a s  possible models for Martian 

surface work include rocks found on the ea r th ' s  surface (igneous, 

sedimentary, and metamorphic) and ex t ra t e r r e s t r i a l  rocks of which 

there a r e  now two important categories for  consideration: (1) meteor i tes  

and (2)  lunar  samples.  Regardless of origin,  a l l  rocks in these 

categories exhibit the general  property that 99. 9% of their  weight 

i s  made up by about a dozen elements.  

The distinct types of chemical assemblages found in these rocks 

consist  of (1)  c rys ta l s ,  (2) pure metal l ic  phase (mostly i ron) ,  and 

( 3 )  sulfide phase. Based upon this generali ty,  Goldschrnidt long ago 

introduced the concept of a geochemical classification of the elements 

a s  determined by the tendency of each element  to partition itself 

chiefly in one of these three phases.  This classification was derived 

f rom extensive mineralogical analyses of meteori tes .  It probably 

should be s t r e s s e d  that the c rys ta l  phase i s  chiefly one involving 

sil icates and aluminosilicates. At any rate ,  the terminology invented 

by Goldschmidt i s  a s  follows: 

A. Those elements preferentially entering the silicate 
c ry  staliine phase a r e  t e rmed  lithophilic, 

R, Those entering the iron phase, siderophilic, --- 



6 .  Those preferr ing the sulfide phase, chalcopliilie. 

D, Extremely volatile elements (gases  at  room tempera ture) ,  
atmophilic. --- 

In the ea r th ' s  c rus t ,  the lithophilic elements a r e  found a t  higher 

abundance than would be expected f rom the cosmic abundance data. 

The siderophilic elements a r e  great ly  depleted. This general resu l t  

i s  par t  of the evidence f rom which i t  i s  in fer red  that the ear th  consists 

of severa l  concentric shells,  each having a distinct geochemical and 

mineralogical makeup, 

In comparing abundances between cosmic predictions and actual rock  

samples,  i t  i s  necessary  to make  cer tain assumptions about the 

atmophilic constituents, since rocks do not normally contain appreciable 

quantities of gas. An important empir ical  fact i s  that in the crystal l ine 

phase of a l l  rock types, oxygen i s  by f a r  the important anion. There 

a r e  no other anions present  a t  high levels. Thus, a meaningful com-  

parison between the cosmic abundance patterns and rock analyses 

can be conveniently made by summing the abundances of a l l  the 

major  cations (principally Na through Ni in the periodic table) and 

recomputing the abundance of each element a s  a percentage of this 

cation total, When this i s  done for data on the ea r th ' s  c rus t  (Ma-66) 

and compared with the cosmic data (Al- 61, Ca-67) one can conclude 

that the ea r th ' s  c r u s t  i s  highly enriched in K, Al, Ti, Na and Ca; 

slightly enriched in Si, Fe ;  slightly depleted in P, Mn; significantly 

depleted in Mg, C1, Cu, Zn; and very strongly depleted in S, Ni, Co 

and Cr .  Similarly,  in comparing a Type A crystall ine sample obtained 

on the Apollo I 1  flight with cosmic abundance shows the lunar  sample 

to be highly enriched in Ti, Al, Ca and Fe; only slightly enriched in 

Mn and G r ;  about equal to cosmic I.evels for Si and K; slightly depleted 

in Mg and Na;  and very strongly depleted in P, S, GI ,  Go, Ni, Cu and Zn, 



G o r r r y a ~ i r r g  the l u n a r  sarrlple with the ea r th ' s  ccrusf., there  a r e  many 

differences and s imilar i t ies ,  perhaps the most  striking of which a r e  

that .the lunar sample i s  50-fold enriched in Cr ,  10-fold enriched in 

Ti, about equal in S, about 50-fold depleted in K and C1, and 8-fold 

depleted in Na, F r o m  this brief discussion, it i s  seen that the 

"expected" concentrations of several  key elements can vary by 

significant factors .  Nonetheless, the overriding consideration that 

should be made i s  that a l l  rock samples ,  whether t e r r e s t r i a l  o r  

ex t ra te r res t r ia l ,  tend to consist  mainly of oxygen and of elements 

between sodium and nickel in the periodic table. Almost all  e lements  

a r e  present,  of course,  a t  extremely low levels,  but a s  far  a s  the m a j o r  

and minor analysis  i s  concerned, the original statement that approximately 

a dozen elements a r e  to be considered remains valid. 

A survey of available data on chemical analyses of major  t e r r e s t r i a l  

and ex t ra t e r r e s t r i a l  rock types has  been performed for  this report .  

F o r  data on the e a r t h ' s  c rus t ,  we have used the extensive compilations 

by Poldervaart  (Po-55) of igneous, sedimentary,  and metamorphic rocks. 

To this has  been added data on various average rock types by Ahrens 

(Ah-65), Mason (Ma-66), and Erns t  ( E r  -69). Es t imates  of the composition 

of the inter ior  of the ear th  have also been made by Mason (Ma-66). Data 

on analyses of var ious meteori tes  have been extracted from the works 

of Mason (Ma-62), Watson (Wa-56), and Wood (Wo-63). Data on the 

Apollo 11 and 12 samples  were  taken f rom a variety of excellent papers  

on this subject (LSPET-69, LSPET-70, En-  70, Ma-70, Wi-70, Ro-70, 

Wo-70). The resu l t s  of Surveyor 7 were  also included (Pa-70) .  Data 

on tektite compositions were  obtained f rom Schnetzler and Pinson 

(Sc-63) and O'Keefe (Ok-70). In Appendix I these compilations a r e  

presented giving the percent by weight of 10 elements ,  A l s ~ ,  ra t ios  

of various elements  have been calculated for a number of interesting 

cases  for each rock type, These data a r e  presented in Appendix 11, 



A cornputer program was written to analyze these d a t a  in v a r i o u s  

ways. One method consisted of calculating various element rat ios  

and then plotting these ra t ios  against  single element concentrations 

and also against  other element ra t ios  to sea rch  for significant trends.  

A number of interesting correlat ions were  found. One of the m o s t  

striking was an extremely strong correlation between the rat io  Mg/Si 

and the absolute Mg concentration, with virtually a l l  data f rom earth,  

meteori te  and lunar rocks grouped tightly around a straight line. This 

indicates that by simply measuring the Mg/Si ratio one may deduce 

with a high degree of confidence the absolute value of the Mg concen- 

t ra t ion in the sample. 

One rat io  apparently having strong significance i s  the ratio K/Ca.  

It has  been pointed out quite often that this ra t io  alone var ies  by m o r e  

o r d e r s  of magnitude than the ratio of nearly any other pair  of ma jo r  

o r  minor elements in t e r r e s t r i a l  rock samples.  The computer 

studies showed that K / C a  i s  an excellent indicator of overal l  chemical 

composition of a sample,  e .  g. , low K/Ca implies low A l / ~ g  and high 

Mg/Si, Mg/Na, and Ti/Si. Many other patterns were  found in the 

computer plots, including severa l  c a s e s  which allowed a ra ther  

"clean" separation of sedimentary rock samples  f rom igneous 

samples ,  In general, the resu l t s  obtained demonstrate that the 

lunar  rocks,  although of distinctly unearthlike composition, show 

many of the same trends among elements and element ratios a s  do 

ea r th  and meteori te  samples ,  The success  of this prel iminary work 

suggests that this line of investigation should be pursued further.  

Another computer study which was performed consisted of an 

n-dimensional mapping of each sample where the n-axes in the 

n-dimensional space are the concentrations of n selected elements, 



Two a rb i t r a ry  geologic samples may he compared for the extent to 

which their  composition i s  the same by calculating the distance 

between the two Ioci in n-dimensional space, This distance i s  a 

numerical  measure  of the s imilar i ty  of two samples.  The computer 

program takes one rock a s  the reference mater ia l  and then calculates 

i t s  distance in this space from a l l  other rocks l is ted in the computer 

memory. This approach shows very promising resu l t s  for establishing 

an objective method of comparing an unknown sample with known samples.  

F o r  example, the resu l t s  of this study clear ly show that the lunar 

samples  a r e  more  closely akin to basic  igneous rocks (esp. basalts)  

than any other type of rock sample,  although they do show fairly good 

correlation with cer tain meteori tes  (esp. eucri tes) .  This method was 

also used to t e s t  the hypothesis that tektites and lunar surface mater ia l  

have a common origin. It was found that the distance between tektites 

and lunar mater ia l  was  much grea ter  than the distance between tektites 

and ear th  sandstones. 



3. 2 Element-by -Elenlent S u m m a r y  ------ ---- 

The following a r e  br ief  discussions of 15 important constituents in 

rocks: 0, Na,  Mg, Al,  S i ,  P, S ,  C l ,  K, G a ,  Ti, Gr,  Mn, Fe, and 

Ni. These discussions a r e  intended to bring out some of the m o r e  

significant facts and derived ru les  concerning the occurrence of 

these elements.  As elsewhere in this report ,  a l l  f igures a r e  given 

in t e r m s  of percent by weight of the pure element (i.  e . ,  not in t e r m s  - --- 
of oxides). 



3 ,  2, 1 Oxygen --- -- 

Oxygen i s  a decidedly lithophilic element. It i s  probable that the 

ea r th ' s  core i s  totally devoid of oxygen. It i s  the only important 

anion in the ea r th ' s  crust .  All other major  elements a r e  present  

a s  cations. The s a m e  i s  t rue  of meteori te  and the lunar samples .  

Of grea t  significance in considering the origin of a tmospheric  oxygen 

i s  the fact that volcanic gases  contain l i t t le o r  no oxygen in the form 

O2. 
Igneous rocks typically contain from 4270 (basic)  to 49% (acidic) 

oxygen by weight. P u r e  quartz  contains 53%. P u r e  l imestone contains 

4870 oxygen. Sedimentary rocks seldom contain l e s s  than 48% oxygen. 

The Apollo 11 and 12 samples  contain from 40 to 43% oxygen. In 

meteor i tes  the range i s  much broader  due to the presence of the i ron  

and sulfide phases,  allowing the concentrations to go a s  low a s  2470 

and a s  high a s  52%. In the common sil icate and aluminosilicate 

minera ls ,  oxygen i s  present  a t  levels  of 31 - 51%. FeO i s  22% and 

F e  0 i s  30% oxygen by weight. 
2 3 



Sodium i s  a major  element in the ea r th ' s  c rus t ,  although it i s  in the 

minor  category in cosmic abundance and in lunar and chondrite 

samples.  In igneous rocks the concentration range is 1. 5 to 370 

with the exception of early crystal lates  such a s  peridotites and 

dunites where i t  i s  highly depleted. It covers a s imilar  range in 

metamorphic and sedimentary rocks except that it i s  very  low in 

highly refined products such a s  orthoquartzite and limestone. I ts  

average concentration i s  0.4% in Apollo 11 samples and 0. 370 in 

Apollo 12 samples,  The typical range for meteori tes  i s  0. 3 to  l$, 

although some meteori tes  contain much lower quantities, Sodium is 

a product of main stage magmatic crystall ization where it i s  found 

mostly in the form of sodic feldspar (up to 8. 870 in albite). In other 

minera ls  it i s  a lso sometimes found a t  high concentrations, viz . ,  

up to 1 170 in pyroxenes (acmite,  jadeite), 67'0 in amphiboles (horn blende, 

riebeckite, glaucophane), 5% in micas  (paragonite) and 1870 in felds- 

pathoids. It i s  classified a s  a strongly lithophilic element due to i t s  

concentration in the ea r th ' s  crust .  



Magnesium i s  a very common element found in nearly al l  minera l  

si l icates and alu-minosilicates with the notable exceptions of the 

feldspars  and feldspathoids. It i s  a strongly lithophilic element 

and in the opinion of Rankama (Ra- 61) i s  probably wholly contained 

in the ea r th ' s  mantle and crus t ,  with the concentration in the mantle 
2 t  2 t  

much grea ter  than that in the c rus t .  Mg substitutes for F e  i n  

al l  minera ls ,  but magnesium i s  normally found in higher concentrations 

in ea r l i e r  crystal la tes  than Fe.  Hence, the F ~ / M ~  rat io  steadily 

increases  in the intermediate products. In igneous rocks magnesium 

steadily increases  from a low of about 0. 2% in  acidic ma te r i a l  to 

about 5'70 in basic mater ial .  It reaches  highs of 13 - 30% in cer tain 

ve ry  ear ly  crystal la tes  (peridotite and dunite). The range i s  much 

m o r e  res t r ic ted  in sedimentary mater ia l s  for which nearly al l  common 

types fall within 0. 5 to 2%. It i s  found a t  a level of approximately 

4 to 6% in  the lunar  samples .  In meteori tes  i t  i s  typically present  

a t  very high concentrations, but i s  never found in the i ron o r  sulfide 

phases. Rather ,  i t  i s  found in the olivines and in the hypersthene 

pyroxenes. Most meteori tes  contain f rom 10 to 15% magnesium by 

weight, but values a s  low a s  4 and a s  high a s  21% a r e  not uncomnion. 

In the common minera ls ,  i t  i s  found a t  concentrations up to 34'70 in 

olivine ( fors te r i te ) ,  24% in pyroxene (diopside, enstati te),  227'0 in 

amphibole, and 1870 in biotite mica.  



3 ,  2 ,  4 Aluminurn ----- 

In t e r m s  of cosmic abundance and average chondritic composition, 

aluminum m u s t  be classified a s  a minor  element. However, in t e r m s  

of i t s  abundance in the e a r t h ' s  c r u s t  and on the lunar surface,  it is  a 

major  element. In the case  of the ea r th  this has  been taken a s  proof 

of the origin of the ea r th ' s  lithosphere by a process  involving extensive 

chemical differentiation. Aluminum is indeed probably almost  

quantitatively concentrated in the e a r t h ' s  upper lithosphere, since 

i t s  enrichment over cosmic levels  i s  about a factor of 10. In magmatic 

differentiation almost  no aluminum is present  in the ear ly  products, 

but in al l  other crystal la tes  i t  is ve ry  common, chiefly because of i t s  

key s t ruc tura l  role  in  the aluminosilicates. (Note: Although many 

types of aluminosilicate s exist, other meta ls  a r e  nearly always found 

to be present  in the c rys t a l  s t ructure.)  In igneous rocks the aluminum 

concentration i s  r a the r  uniform and non-varying between the l imi ts  of 

7 - 970 except that much lower concentrations a r e  present  in peridotites 

and dunites. Sedimentary and metamorphic rocks cover a slightly 

broader  range, 3 - 10%. All lunar specimens contain aluminum in the 

range of 4 - 8%. Only in meteor i tes  i s  aluminum commonly found a t  

lower values, usually a t  a level of the o r d e r  of 1 %, but sometimes a t  

other levels between 0. 5 and 770. Among the common minerals  

aluminum i s  especially prominent in  the feldspars  and feldspathoids 

where i t  m a y  be present  a t  concentrations a s  high a s  19%. It is  a l so  

present  in some amphiboles (up to 10%) and in a l l  micas (up to 21 %). 

Jadeite pyroxene contains 1370 aluminum. I t  i s ,  however, absent f rom 

olivines. It i s  found in the form of i t s  oxide, alumina, only in r a r e  

occurrences when it i s  present  in g rea t  excess  over the elements 

Ca, N a  and K, 



3 ,  2.. 5 Silicon 

Silicon is a lithophilic element with only smal l  quantities found in the 

i ron  phase in meteori tes .  If one compares  the composition of the 

ea r th ' s  c r u s t  to the cosmic abundance schemes of Cameron and Aller ,  

by neglecting a l l  atmophilic elements and other elements below sodium 

in the periodic table, then the enrichment of silicon i s  1.  5 to 2. 5. 

The lunar  abundance of silicon i s  lower,  but ag rees  quite well with 

the cosmic abundance according to Cameron and i s  enriched a t  a 

factor of 1 . 4  in  comparison to the cosmic abundance of Aller,  In 

igneous rocks it i s  present  in concentrations f rom 21 to 3570 with a 

ve ry  strong t rend toward higher silicon contents for  the l a t e r  products 

of magmatic crystallization. Indeed the silicon content i s  often taken 

a s  an index of the course  of differentiation and evolution of rock types, 

although in many special  cases  the index i s  not totally reliable. P u r e  

quartz  contains 47% silicon by weight. Consequently, cer tain sedimentary 

rocks approach this  l imit ,  although silicon content in sediments may 

approach zero. The Apollo 11 and 12 lunar  samples  contain 

17 to 2370 silicon. As mentioned above, this i s  considerably below 

values typical of the ea r th ' s  c r u s t  except for the mos t  basic rocks,  

but not in strong disagreement with cosmic abundance predictions. 

In meteori tes  the sil icon content ranges from a high of about 2570 

all the way down to about 87'0. 



3-2-6 Phosphorus --- --"--" 

This element i s  both siderophilic and lithophilic. It i s  present  in the 

important non-silicate minera l  apatite which is  one of the most  

common accesso ry  minera ls  of igneous rocks.  Indeed Rankama 

(Ra-50) est imates  that typically 9570 of the phosphorus in igneous 

rocks i s  in the form of apatite. In magmatic crystallization both 

phosphorus and titanium appear in the ea r ly  formed rocks. This i s  

not because of substitution for one another in a common system, 

but because they both form minera ls  (i lmenite and sphene for Ti 

and apatite for P) having high melting points. The concentration of 

phosphorus in igneous and sedimentary rocks i s  typically about 0.10/0, 

which agrees  roughly with cosmic abundance indications. However, 

i t  i s  depleted in ma te r i a l  f rom the lunar surface by a factor of 

approximately 25. Phosphorus can reach concentrations of 0. 370 

in i ron meteori tes .  Mason (Ma-66), f rom a consideration of the 

probable composition of the mantle, s ta tes  that phosphorus shows 

no marked  fractionation between mantle and crust .  



3. 2, 7 Sulfur 

Although sulfur i s  present  a t  only t r ace  levels in the e a r t h ' s  c rus t ,  

i t  i s  a major  element in chondritic meteori tes  and in t e r m s  of the 

cosmic abundance schemes.  It i s  often found a t  concentrations of 

2 - 3% in meteori tes  and may  be a s  high a s  670 in the Type I carbonaceous 

chondrites. Indeed the spectroscopic data a s  reviewed by Aller shows 

sulfur to be m o r e  abundant in the solar  sys tem than any element above 

sodium in  the periodic table with the exception of silicon. Its  presence 

a t  low concentration in the e a r t h ' s  c r u s t  i s  presumably due to an 

increasingly high concentration of the minera l  troil i te deep within 

the earth.  When i t  does occur in igneous rocks, i t  i s  usually one of 

the ear l ies t  rocks of magmatic crystall ization and occurs  in  the fo rm of 

severa l  independent minerals :  pyrite,  pyrrhotite, calcopyrite, 

pentlandite and bornite. Also in the very late pegmatitic stages 

sulfur i s  considerably enriched in the residual melt .  



3 ,  2 ,  8 Cl?Eo rine 

Chlorine and the other halogens a r e  classified a s  lithophilic, However, 

i f  the cosmic abundance observations by AlZer (A l -61)  a r e  correct ,  

chlorine i s  significantly depleted f rom the e a r t h ' s  crust .  The compound 

FeC1 has been found in the i ron  phase in meteori tes ,  which indicates 
2 

that chlorine could be present  in the ea r th ' s  core.  The halogens and 

their  compounds a r e  quite volatile. The fac t  that chlorine i s  depleted 

in  the lunar samples by a factor of 10 to 100 compared to the eai-th's 

c r u s t  has  been taken a s  evidence that the moon went through a heating 

and degassing phase. Even in the ea r th ' s  c rus t ,  chlorine i s  present  

a t  a concentration of only about 0.01%. Al ler ' s  data (Al-61) indicates 

a concentration of over 1% i s  to be expected i f  s te l la r  abundances were 

p rese rved  in the ea r th ' s  c rus t ,  



3 ,  2, 9 Potassium 

The cosmic, meteori t ic ,  and lunar  abundances of potassium place i t  

as a t r ace  element,  However, because of extensive differentiation 

i t  i s  a relatively abundant constituent in the ea r th ' s  c rus t ,  reaching 

levels a s  high a s  4. 57'0 in acidic igneous rocks and decreasing to 

about 0. 57'0 in basic rocks. Much lower concentrations a r e  found in 

dunites and peridotites. Likewise, i t  i s  found a t  levels  of 0. 5 to 3. 57'0 

in sedimentary rocks. In lunar samples  i t  i s  present  a t  levels of 0. 1 

to 0. 27'0 and i s  a t  even lower concentrations in meteori tes .  Pure  

minera ls  may  contain high concentrations of potassium, up to 14% 

in feldspar (anorthite),  187'0 in feldspathoids (leucite) and 1070 in micas.  

The low concentration of potassium and other volatile elements i n  the 

lunar  surface has often been taken a s  evidence of extreme heating and 

degassing.::: The rat io  of potassium to calcium var ies  strikingly in  

rocks of the ear th ' s  c rus t  and has  been considered a s  a diagnostic 

rat io  of ma jo r  importance. 

:k Note, however, that f rom the discussion on page 8 above, the 
lunar sample is probably not depleted a t  a l l  in potassium content 
in t e r m s  of estimated cosmic abundances. 



3.2.10 Galciurn -- - 

Calcium i s  a strongly lithophilic element enriched by a factor of 

approximately 3 in the ea r th ' s  c rus t  over cosmic abundances. En 

addition to being an important cation in severa l  si l icate minera ls ,  

i t  i s  a l so  found in many important non-sil icate minerals  including 

limestone, dolomite, gypsum, anhydrite, and fluorite. The m o s t  

important igneous minera l  containing calcium i s  anorthite feldspar 

(14% Ca),  It i s  also present  a t  up to 18. 5% in pyroxene (diopside, 

hedenhergite), 10% i n  amphiboles and sometimes a s  a substitution 

cation in feldspathoids (sodalite). During magmatic crystall ization 

calcium i s  an ear ly  product appearing mainly in the anorthite form. 

In igneous rocks  i t s  concentration i s  a strong function of silicon 

content. Thus, calcium i s  present  a t  0.8'7'0 in very  acidic rocks,  but 

a s  silicon content decreases  the calcium level  steadily r i s e s  to  a s  high 

a s  8% in very  basic forms (although i t  i s  very low in peridotites and 

dunites). The concentration in typical sedimentary rocks i s  1 - 5'7'0, 

but in l imestone i t  i s  in the o r d e r  of 3070. The Apollo 11 and 12 samples  

contained 7 - 97'0 calcium and the Surveyor 7 data (Pa-70)  indicate even 

higher concentrations in the highlands. In meteori tes  i t  i s  usually 

present  a t  a level of 1 - 2010, although the range of 0. 5 to 10% i s  

representative.  Angrite meteori tes  contain 1870 calcium, 



Tliis element i s  in the t r a c e  category in terrns of cosmic a b u n d a n c e ~  

and levels in chondrites,  However, it i s  found at much higher levels 

in the ea r th ' s  c rus t  and in the lunar surface.  Indeed the Apollo 11 

values show enrichment over cosmic levels by a factor of about 100. 

Although titanium can replace aluminum in sixfold coordination and 

i s  accordingly found in pyroxenes, amphiboles, and biotite micas ,  

i t  i s  mainly present  in  the ea r th ' s  c r u s t  and in  the lunar surface a s  the 

iron-ti tanium oxide, ilmenite. Other important titanium compounds 

a r e  ruti le,  sphene, and titanium magnetite. It crystal l izes  ear ly  

f rom magmas  mainly a s  ilmenite. Consequently, i t s  concentration 

i s  low in acidic rocks (about 0. 2%),  r is ing to a maximum of about 

1 .5% in basic rocks. In sedimentary rocks i t  covers the range 0.1 

to 0. 570~ Apollo 11 samples  contained 4. 5 to 7. 5% titanium, while 

Apollo 12 samples  contained 1. 5 to 370. The unusually high concentration 

in lunar samples  i s  considered a major  experimental resu l t  that has  

not been adequately explained to date. In meteori tes ,  the level of 

titanium i s  usually quite low, of the o rde r  of 0. 050/0, although i t  

reaches  levels of 1. 5% in angri tes  and 0. 3% in eucrites.  



Although chl~orniurn i s  classified a s  a lithophilic element, i t s  

abundance i s  very  low in the ea r th ' s  crust .  Mason (Ma-66) s ta tes  

that chromium depletion in the c rus t  i s  one of the significant c a s e s  

of strong fractionation of an element between the c rus t  and the mantle, 

Rankama (Ra-61) s ta tes  that the low C r  content of the c rus t  i s  another 

important experimental fac t  which verifies that the c r u s t  i s  the product 
3 t 

of extreme geochemical differentiation, Although C r  has an ionic 
3t 

radius very close to F e  i t  s eems  to be preferentially removed f rom 

an  igneous me l t  very ear ly  in crystallization, where i t  comes out in 

a form of the i ron-chromium oxide, chromite.  The average c rus t a l  

content of chromium i s  only 0. 0170, but Apollo 11 samples  contain 

of the order  of 0.  570 chromium. 



3.2,13 Manganese 
--"-- 

Considerable data on the manganese contentof ear th  rocks i s  available 

because of the existence of a simple, sensit ive,  colorrnetric method of 

determination. In igneous rocks manganese i s  present  a lmost  
2-i- 

exclusively in the f o r m  Mn where i t  substi tutes extensively for 

Fe2'. The Mn/Fe  rat io  i s  quite constant for rocks found during the 

main  stage of crystallization. However, i t  i s  enriched in ve ry  la te  

crystal la tes  and consequently the ~ n / F e  rat io  i s  much higher in 

pegmatites. It i s  a lithophilic element and hence would not be 

expected to be found in significant quantities in the ea r th ' s  core.  

On the other hand, Mason (Ma-66) concludes that Mn i s  one of the 

elements which shows li t t le fractionation between the mantle and 

the crust .  I ts  typical concentration in igneous rocks i s  0. 1%. 

Lunar samples  contain a s  much a s  0 .5% manganese. 



Iron, together with silicon, sulfur and oxygen, a r e  the key elements 

in discussing the geochemical evolution of planetary matter .  It i s  

extremely abundant f r o m  the cosmic standpoint, being even m o r e  

abundant than silicon according to Cameron's  scheme,  and only 

slightly behind silicon, sulfur and magnesium.according to Al le r ' s  

scheme. The siderophilic elements (Co, Ni, Ru, Rh, Pd,  Os, I r ,  

P t ,  Au and severa l  o the r s  to a l e s s e r  extent) concentrate in the pure 

i ron phase when such a phase i s  present  and in equilibrium with 

sil icate and sulfur phases.  Thus, the presumed iron core  of the 

ea r th  also probably contains significant quantities of these siderophilic 

elements. Likewise, the presence of an i ron  phase during formation 

of any other solar sys tem bodies would resu l t  in  significant geochemical 

differentiation. On ear th ,  among the ear l ies t  products of magmatic 
3 t  

differentiation a r e  the i ron  oxide minera ls  and FeS. The F e  content 
2 t  

var ies  ra ther  slowly a s  crystallization proceeds,  but F e  comes out 
3 t  2 t  

early.  Thus the F e  / ~ e  rat io  increases  in l a t e r  differentiates. 

The i ron  content in ve ry  acidic rocks i s  about 1. 570 and increases  a s  

the silicon content dec reases  to a maximum of about 1070 in basalts.  

The same  concentration range i s  covered in sedimentary and meta-  

morphic rocks.  Apollo 11 and 12 samples  contain from 12 to 1870 iron. 

Most meteor i tes  contain m o r e  than 20% i ron  and levels  can easily reach  

5570. In common minera ls  the concentration by weight of i ron can a lso  

be quite high, up to 55% in olivine (fayalite), 42% in pyroxenes, 

3970 in amphiboles, and 3370 in micas.  



3. 2, 1 5  Nickel 
p- 

Nickel i s  a very strongly siderophilic element and therefore it is 

probably concentrated in the ea r th ' s  i ron core ,  Indeed, i t  i s  found 

only a t  very low levels  on the e a r t h ' s  c r u s t  and in the lunar samples  

analyzed to date. In contrast ,  i t  i s  an important constituent in 

chondrites and i s  considered to have a high cosmic abundance 

since i t s  concentration in the sun i s  likewise high. Therefore,  an  

important theoretical consideration in planetary evolution i s  to explain 

the strong depletion in nickel in both the ea r th  and lunar surfaces.  

Indeed, O'Keefe (Ok-70) has  argued that i t s  very low concentration 

on the moon i s  strong evidence that the moon was formed by fission 

of mater ia l  f rom the ea r th ' s  c r u s t  and mantle. In common minera ls  

nickel i s  mainly found in the hypersthene pyroxenes, although some 

i s  a lso found in the augite pyroxenes, the amphiboles and the biotite 

micas.  It i s  not found in the feldspars or  feldspathoids. Its general  

tendency i s  to become enriched in the ear ly  crystall ized f e r ro  - 
magnesian minera ls  and i t  forms no significant minera ls  of i t s  own. 

The average crus ta l  concentration of Ni i s  only 0. 0080/0, but it reaches 

concentrations a s  high a s  2% in chondrite meteori tes  and even 20% in  

irons.  



3, 3 Estimated Kank-Order of Elements on Mars 
-----*--- 

Table I i s  a tabulation of a la rge  amount of data on various rock 

samples,  with al l  elements ranked in decreasing abundance by weight. 

(Note: Oxygen has been purposely omitted and H and He have been 

dropped f rom the cosmic abundance l is ts .  ) The abundances a r e  

categorized in t e rms  of ma jo r ,  minor ,  t race ,  and u l t ra - t race  on a 

relative weight scale where silicon has been assigned the value of 100. -- 
It i s  of special  interest  that the "major" category i s  made  up by no 

m o r e  than seven elements  for every rock type. The same statement 

holds for the "minor" category. At the t r a c e  level, a significantly 

l a r g e r  number of elements may  o r  may not be involved. To compare 

the frequency a t  which each element occurs  a t  a given level in different 

samples ,  Table I1 has  been prepared. In this table a l l  elements 

normally found in the ea r th ' s  c r u s t  a t  levels above 0. 01% a r e  included. 

F r o m  this table it is  possible to easily determine which elements a r e  

consistently present  in high abundance and those which exhibit strong 

fluctuations. For  example, F e  and Si a r e  always in the major  category. 

Ca i s  either major  o r  minor ,  but not less .  On the other hand, Sc i s  

never found above the u l t ra - t race  level. Elements like Ni, C1, S, 

Ti and C r  exhibit strong and highly significant variations.  

A semi -objective l i s t  of the elements most  likely to be found on an 

unknown planetary body has  been compiled by mathematically averaging 

the rankings in Table I1 for the five se t s  of data. By this procedure,  

it was possible to assign a classification to each element.  The resul ts  

a r e  presented in Table 111 which gives the ranking of each element 

in o rde r ,  decreasing f rom silicon a t  the highest level, The procedure 

followed tends to emphasize,  of course,  the cosmic abundance resul ts .  

However, i t  has the special  advantage of emphasizing those elements 

which a r e  i?ot normally  f o ~ l n d  a t  hngh levels 1-a the e a r t h ' s  c rus t ,  hut 



Table I. Rank 0 r d e r  of the Elements  by Weight Abundance 

Abundance s 
(Si = 100) 

Major 
(10-1000) 

Minor  
(1  -10) 

I 
N 
4 

I 

T r a c e  
(0* 1-11 

Ultra-Trace 
(O* 01 -O* 1) 

References 

P 
Ba 
Sr 
C 1 
Z r ,  Rb', V 
B, Zn, La 

Average 
Sandstone 



Table 16. Relative Abundances of the Elements>% 

Z Element 

Major Major 

Minor I I UT I 
Minor 1 Minor I Minor I Major 

Major  1 Major I Major  1 Minor 

Minor I Minor I Minor I Major 

Major 

T 

Major  

Minor 

Major 

Minor 

Major 

T 

Major 

T 

Major 

UT 

Major 

T 

Minor 

UUT 

Major 

UUT 

Minor 

UUT 

Major 

UUT 

Minor I Minor I Minor I UT 
T I Minor 1 Minor I 
Major Major 

T 

Major 

Minor 

Major 

UUT 

Minor I Minor I Minor I UT 

UUT I UUT I UUT 

UUUT 

UUT 

/ UUT UUT 

UUT 

UUT 

U T  

U T  

UT 

Mino r 

Major  

Major  

Major  

T 

T 

UT 

T 

Major  

UT 

Major 

UT 

Minor 

Minor 

Major  

UUT 

UT 

UUT 

UUT 

:%Relative to Si = 100. Based upon weight, 

References: (1) i s  A1-61 (4) is Ma-66 
(2)  i s  Ca-67 (5) is  LSPET-69 
(3) i s  Ah-65 



Major Elements 

Minor Elements 

Trace  Elements 

Ultra- Trace  Elements  

* Based upon the assumption that the rank-o rder  can be 
determined from an average of the five rank-orders  
given previously. 

Oxygen i s  purposely omitted f rom this l is t .  



whic-h could wel l  be present at high Levels on other planetary surfaces, 

Thus, in the l i s t  of Table 111, chromium and manganese appear a s  

minor elements,  whereas they a r e  u l t ra - t race  and t race ,  r e  spectively, 

in the ea r th ' s  c rus t .  The utility of this  classification i s  apparent 

when i t  i s  real ized that these two elements turned out to be in the 

minor range in the lunar  analyses.  This l i s t  also gives special  

importance to elements like sulphur and nickel, compared to what 

one would expect simply by using the ea r th ' s  rocks a s  a bas is  for 

predicting elemental compositions. In Table IV the elements likely 

to account for 99% of any a rb i t r a ry  rock a r e  presented, along with 

their  expected minimum and maximum concentration levels a s  compiled 

f rom a survey of the data presented in Appendix I and in section 3 . 2 .  



Table IV. Probable  Concentration Range for Abundant Elements 
---a-a "" - - - -- --A 

Element 
P e r c e n t  by Weight  

Lower Limit Upper Limit 



4.1 Large Scale Te r ra in  Types - 

Presen t  information suggests a three  -fold sub-division of Martian 

t e r r a in  into (1) c ra te red ,  (2) chaotic, and ( 3 )  featureless .  The 

c ra t e red  t e r r a in  appears  closely s imilar  to lunar uplands and the 

expectation i s  that the two planetoid a r e a s  will be compositionally 

s imi lar .  By analogy to Apollo 1 1 and 12 resu l t s  we may  expect 

basic volcanic -type rocks admixed with a ve ry  smal l  quantity of 

meteori t ic  mater ia l s .  The compositions of a r e a s  of chaotic and 

featurele s s te r ra in ,  however, remain totally speculative, but a r e  

of extreme in teres t  in deducing the his tory of the planet. Some 

limiting possibilities a re :  

( I )  Chaotic t e r r a in  

(a)  If of collapse origin perhaps of the s a m e  composition 
a s  c ra t e red  te r ra in .  

(b) If of an ejecta origin perhaps of a different volcanic 
composition. 

(c )  If of a dune origin perhaps the "weathered" and 
t ransported products of a Martian erosion. 

(2)  Fea ture less  t e r r a in  

(a)  If of impact origin perhaps composed of finely divided 
Martian basement rock and admixed meteori t ic  mater ial .  

(b) If of volcanic origin perhaps composed of sheetlike 
tuffaceous volcanic s. 

( c )  If of subsidence origin perhaps filled with Martian 
"erosional" debris.  



4, 2 Specialized Landing Sites ------ - -- 

Pr io r  to landing on Mars ,  the Viking spacecraf t  will orbi t  the planet 

for  an extended reconnaissance period. At this t ime, based upon 

information obtained f rom television pictures  and numerous other 

sensors ,  decisions will be made a s  to the most  likely locations for  

the presence of life forms.  Green and L a r m o r e  (Gr-70) point out 

that the ideal landing point in the sea rch  for life on such a cold, 

a r i d  planet a s  M a r s  would be a t  s i tes  exhibiting volcanological 

activity. Such a r e a s  of defluidization a r e  warmer  and wetter than 

adjacent a r e a s ,  thus favoring biological activity. As the authors 

state,  "In short ,  the geology may determine the biologically 

significant s i tes .  " On Ear th ,  defluidization centers  a r e  commonly 

marked by sulfur - r ich  and highly hydrated minera ls .  



5.0 EXPERIMENrTAL PLANETARY GEOCHEMISTRY 

The considerable in te res t  of geologists and other scient is ts  in the 

geochemistry of meteor i tes  has  in recent  years  been given added 

impetus by the availability of new, improved, non-destructive methods 

of analysis and by the g rea t  in te res t  generated in planetary chemistry 

through the availability of lunar  samples.  Much additional work can 

be done in this a r e a  and it i s  expected that ever  more  sensitive 

investigational techniques will reveal  important new data on this 

c lass  of rock samples.  

5 . 2  The Lunar Surface 

Our knowledge of the geochemistry of the surface of the moon has  

increased  enormously during the past few years  through the data 

obtained remotely by the Surveyor spacecraf t  and f rom laboratory 

analys e s  of the Apollo 1 1 and 1 2 sample s. More Apollo samples  

a r e  expected in the near  future and, in addition, a g r o s s  geological 

survey of the moon will be attempted using x - ray  fluorescence spec-  

t romete r s  orbiting the moon. Ground-based efforts include spec t ra l  

reflectance (Mc-70) and emissivi ty  (Fu-70) mapping of the lunar 

surface to reveal  a r e a s  of different composition. Russian achievements 

in this a r e a  have included the successful landing and takeoff of a 

spacecraf t  whose mission was to obtain soil  and rock samples  and 

re turn  them to ear th for analysis.  They have also landed an automated 

lunar roving vehicle, Lunokhod I, which includes an x - r a y  fluorescence 

analyzer for measuring surface composition. 



5, 3 The Asteroids  

Remote mineralogical analysis of the asteroids  now has begun with 

the spectral  reflectance studies of McCord, Adams, and Johnson 

(Mc-70a). These authors conclude that as te ro id  Vesta contains 

abundant Mg-rich orthopyroxene, a t  leas t  on the surface,  and 

that i t s  composition i s  much m o r e  s imi lar  to cer tain basalt ic 

achondrites than to other types of meteor i tes  o r  to the Apollo 11 

samples.  

5 .4  Mars  

Spectral  reflectivity measurements  of Mars  have been interpreted 

by different observers  to infer the presence of limonite (Po-69, Po-70), 

oxidized basalt  (Mc-69), and carbon suboxide (Pl-69) .  At any rate ,  

such data i s  not necessar i ly  sufficient to define surface composition 

on a planet like Mars  where atmospheric  o r  specialized erosional  

processes  may give r i s e  to superficial  surface coatings not a t  a l l  

indicative of average surface composition (e .  g . ,  an ear th  analog 

would be the i ron oxide stains found on cer tain deser t  sands).  No 

practical technique for  unambiguous analysis of surface composition 

of Mars  f rom other than the E a r t h  o r  Mars  orbi t  i s  available a t  this 

t ime. F o r  fur ther  data, we mus t  await a surface landing of appropriate 

instrumentation. 



S,O AN X-RAY FLUORESCENCE SPECTROMETER FOR ANALYSIS OF 
P L A N E T A R Y  STJRFACES 

As par t  of this investigation, methods for remote analysis of the 

chemical composition of planetary sur faces  were  surveyed. Pa r t i cu la r  

attention was given to the possible use  of such an  instrument on the 

Viking spacecraf t  being designed for a soft landing on Mars .  Among 

the techniques that have been successfully used to measure  the element 

composition of rocks a re :  (1) wet chemistry,  ( 2 )  atomic absorption, 

( 3 )  neutron and gamma activation analysis,  (4) spark  source  m a s s  

spe ctrornetry, (5)  alpha particle scat ter ing spectrometry,  and 

(6)  x - ray  fluorescence spectrometry.  F r o m  the standpoint of 

mission constraints,  and the requirement for high performance by 

a small ,  lightweight unit, the x - ray  fluorescence method has been 

determined to be a quite pract ical  and satisfactory approach. Among 

the investigations performed for this repor t  were  improved computer 

modeling of instrument response, e s t imates  of performance capabilities 

of an instrument,  laboratory verification of the theoretical calculations, 

and development of cr i t ical  electronic circuits.  

6. 1 C o m ~ u t e r  Modeling 

A computer model previously developed fo r  a spaceborne x - r a y  

spec t rometer  (Cl-69) has  been expanded and updated to include 

nearly a l l  pertinent pa ramete r s  affecting the performance of such 

an instrument.  The new version of this computer program includes 

the following factors:  energy and source  strength of two independent 

radioisotope excitation sources,  source to sample distance, sample 

to detector distance, sample s ize ,  detector window diameter ,  

detector window composition and thickness, detector gas filling 

composition and pressure, angle of incidence of excitation radiation,  



exit angle of flusr e scent radiation, measurement  t ime,  thiclcness 

and composition of two independent f i l te rs ,  f i l ter absorption, 

fluorescent radiation produced in each f i l ter ,  amount of radiation 

coherently scat tered by sample f rom sources ,  detector resolution, 

detector gain, drift  in sys tem gain, low and high energy discr iminator  

settings, the sample mat r ix  effects of (1) internal absorption of 

fluorescent emissions and (2) secondary fluorescent excitation of 

one element by another element in the sample,  background gamma 

radiation spectrum f rom the radioisotope thermo-electr ic  genera tors ,  

fluorescent yields of the elements ,  m a s s  absorption coefficients of 

the elements ,  and sample composition. The program i s  capable of 

two distinct output modes. The f i r s t  of these plots and pr ints  out 

the pulse height spectrum predicted for a given se t  of conditions. 

The second i s  used to calculate the s tandard deviation and minimum 

detection l imit  for each element under the prescr ibed instrument 

setup conditions. 

6. 2 Predicted Performance Capabilities - 

Table V shows the resu l t s  of computer calculations based upon 

real is t ic  levels of excitation source strength and pract ical  pro-  

portional counter performance capabilities. It i s  seen that the 

minimum detection l imit  will be excellent for  a l l  elements above 

aluminum and that even for a difficult element like magnesium 

the minimum detection l imit  will be of the o rde r  of 1%. Sodium 

was not included since the minimum l imit  for this sys tem would 

be in the neighborhood of a few percent  and sodium very r a r e l y  

achieves this level of concentration in any type of rock. With 

special  techniques such a s  ultra-thin counter windows and perhaps 

gas flow mode of operation, i twould  be possible to considerably 



Table V. Pre l iminary  - Predicted Per formance  Capabilities::: 
--. -- ,-- 

Minirrrum Detecti.011 Limit  
Element  Prec i  sion::::z -- (Weiglzt) 

::< Based upon a 50 m C i  source  s t rength and presumed 
RTG background radiation levels.  Number given i s  
average  for 30 rocks analyzed. 

.I, .Q. Relative s tandard deviation due to counting s ta t i s t ics  
. a t  the 1070 weight level. F o r  o ther  weights, u se  
Rel. Std. Dev. = (10 x ~ r e c i s i o n ) / ( ~ e i g h t )  

NOTE: A l l  counting t imes  a s sumed  to be 100 seconds. 



reduce the minimum detection limit for m a g n e s i r ~ ~ n  and to achieve 

a sat isfactory l imit  for detection of sodium. However, such 

techniques, although they could be employed for a space mission, 

would very  seriously reduce the reliability of the device. Therefore,  

this possibility i s  not considered in detail a t  this time. 

6. 3 Laboratorv Experimentation 

Considerable data has  been taken with various rock specimens in 

pressed  powdered form,  using Fe-55 and Cd-109 isotope x - ray  

sources.  The proportional counter employed was fabricated f rom 

solid b r a s s  stock, i s  cylindrical in shape, with an inside diameter 

of 0. 5", a 1 -mil  diameter  stainless s tee l  anode wire,  and a 1 -mil  

thick beryllium entrance window. Data for  four USGS standard rock 

specimens i s  presented in Figures  1 through 4. The dots a r e  experi-  

mental data obtained with the sources,  counter, and rock specimens 

inside a helium-filled tent. The solid l ines  a r e  the resul ts  a s  predicted 

by computer calculations using the program described in section 6. 1 

above. In general ,  the experimental resu l t s  confirm quite satisfactorily 

the computer predictions, The m o s t  ser ious  discrepancy i s  the 

presence of more  counts between 2. 5 and 3 keV than predicted by 

theory. This was determined to be due to fluorescence of residual  

argon gas in the helium tent by measurement  of background spectrum 

with no sample present ,  Figures  5 and 6 show the theoretical curves 

for these four samples  normalized in two different ways to demonstrate 

the differences in spec t ra  which resul t  f rom differences in sample 

composition. F r o m  this one can see that the potassium-calcium 

ratio can be estimated with fa i r  accuracy from the shape of the 

peak in the energy region 3 .  5 - 4 keV. By employing energy f i l ters  

to al ter  the spectrum, the K / C ~  ratio can be deter-mined very 

a ccur al-ely. 
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Fig. 1. Pulse height spectrum of fluorescent emissions 
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Fig. 3. Same as Fig. 1, but for USGS standard BCR-1. 
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Fig. 6 .  Same xcept curves normalized at the Si peak. 



6,  "!Electronic Circui t ry Developrrlent s -------.--- 

The key circutts requiring specific development fo r  a Mar,.; x- ray  

fluorescent spectrometer  are  the preamplif ier ,  ampl i f ie r ,  and 

energy threshold discr iminator .  Figures  7 and 8 show two circui ts  

that were  breadboarded and tes ted  fo r  per formance  and tempera ture  

stability. The fir s t  c i rcui t  employs operational ampl i f i e r s  where 

possible and can be fabricated a t  a sma l l e r  volume than the second 

circuit .  However, i t  draws m o r e  power and i s  not a s  sa t i s fac tory  

a t  high counting r a t e s  since it produces pulses with a much grea ter  

width than the second circui t ,  Both circui ts  a r e  reasonably well 

compens ated for tempera ture  effects, although fur ther  w o r k  i s  

required in this  a rea .  







7,O SCIENTIFIC BENEFITS OF A GEOCHEMICAL ANA1,SISES PERFORMED 
BY THE VIKING LANDER 

The Viking '75 mission to M a r s  will s ea rch  for the presence of life 

and organic compounds in surface soil ,  Any information, such a s  

elemental analysis,  on the nature of this soil  will greatly complement 

these investigations. Indeed, the selection of landing s i tes  for the 

Viking spacecraf t  may corre la te  strongly with cer tain apparent 

geological features .  Green and Larmore  (Gr-70) state,  

"To determine the possibility of life on the planets we must  
find out if the planet has  been differentiated. If i t  has  been 
differentiated, i t  had to defluidize. If i t  defluidized, it 
would re lease  warmth and moisture  to the surface a t  
discrete  places determined by planetary tectonics. 
Warmth and mois ture  would favor the generation of 
life forms.  . . . . . Such centers  may be the fountainhead 
of possible life forms on an a r i d  planet such a s  Mars .  I '  

7. 2 Geological Historv of Mars  

Although the p r imary  mission of Viking '75 remains the s e a r c h  for 

ex t r a t e r r e s t r i a l  life, the resul ts  of the Mariner  6 and 7 M a r s  fly-bys 

and the finding of no appreciable organic carbon in the Apollo 11 and 

12 samples  have led many to suggest a reappra isa l  of goals. 

Wetherill (We-70) has  argued for inclusion of soil  elemental analysis  

on the Viking payload. Murray,  Soderblom, Sharp, and Cutts (Mu-7 1) 

conclude their  important analysis of the television pictures of Mars  

with the following comments: 

"The basis for emphasis on M a r s  a s  the pr ime ta rge t  in the 
sea rch  for ex t r a - t e r r e s t r i a l  life seems  to be weakened by 
the strong resemblance of i t s  surface to the uplands of the 
moon. Rather,  Mars should be accorded priority geologically 



a s  exhibiting important aspects  of planetary evolution unknown 
el sewhere in this Solar System, such a s  the replacement of 
c ra t e red  t e r r a ins  by younger uncratered t e r r a i n s . .  . . . . . 
Only on Mars  can there be found a carbon dioxide f ros t  cap 
with a l l  i t s  associated phenomena. There a r e  erosional 
processes  and modification episodes recorded on the mart ian 
surface unlike those yet known on any other body. The un- 
ravelling of these character is t ical ly  mar t ian  processes  and 
the associated surface history provides a compelling and 
rewarding intellectual focus for exploration of that planet. " 

Analysis of the abundant elements in the Martian surface,  especially 

i f  accomplished a t  different s i tes ,  will be of inestimable value in 

unravelling the geological s tory of Mars .  Indeed, the geochemical 

analyses of lunar samples  have already disproved cer tain models 

of the moon, and have laid the framework for m o r e  sophisticated 

and complete models (e.  g. , Wo-70, An-70, Ri-70, etc. ). 

7. 3 Origin and History of the Solar System 

A very thorough and objective analysis of cur rent  models of the 

evolution of the so lar  sys tem has  been made by Adams, Conel, 

Dunne, Fanale,  Holstrom, and Loomis (Ad- 69).  In considering 

severa l  possible evolutionary models, they concluded that the 

mas te r  s t rategy for  scientific exploration of the planets should be 

to obtain a s  much data a s  possible to answer five key questions: 

(1)  Were there  elemental and isotopic nonuniformities in 
the pr imordial  nebula? 

( 2 )  What was the state of the sun-cloud sys tem when it 
f i r s t  appeared a s  a recognizable uni t?  

( 3 )  Was the sun- cloud chemi cally homogenous ? 

(4) Did accretion into planets resul t  in the present  a r r a y  of 
planets, o r  was the a r r a y  subsequently a l te red?  

(5) A r e  the ii~dbvidual p lanets  chemically uniform o r  n o n u n i f o r m ?  



The authors go fur ther  to  define the experiments  which should be 

per formed to gather  the data requi red  to answer  these quest ior~s  

and recoxnmend the following "essential  investigations" for planetary 

surfaces: 

( a )  Elemental abundance s 

(b) Mineral phases and assemblages 

(c )  Heat flow 

(d) Isotopic abundances of cer tain elements 

Experiment (a) ,  the quantitative measurement  of the key chemical 

elements,  would provide data which could make a large contribution 

toward answering questions (3) through (5 )  above. 
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APPENDIX I 

ROCK AND MINERAL COMPOSITION DATA 
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BASAL 1 S 1 . 9 8  -1.35 1 .40  ~ l t O 1  3 - 9 6  
PLATEAU BASALTS 1941 -1.25 1.24 *1*01 2 . 9 7  
MAF I C I GNEOUS 1 .43  1 .02  1 37 *1* 03 2 97 
AYE OLIVINE BASALT PACIFIC 1.67 -1.08 %*32 -1.07 2 . 9 7  
NORNAL ALK BASALTS 1 .67  It11 1 4 9  -1r09 3.96 
PERIDQTITE~MODULES I N  B A S A  -16.12 d187 =3 * 95 I -io,ia 
ULTRAMAFIG IGNEOUS -2 * 02 2 . 6 7  -1.88 m i  ap 2 .97  
PERIROTITES - 2 . 4 9  4 . 04 -2  . 87 *1,14 - a  . s i  
DUN1 TES( BALY 1 -16 * 1 2  5.62 -32.74 m I q 2 1 1  -1 t OI 
OUNITES (NOCKOLDS) -5e37 5 .11  - / 4 , 3 4  * 1 + 2 4  *iOaIQ- 
**a99 EbRTH SEDIMENTARY ***** 
AYE ORTHBOUQRTZITE -16,l.Z -84 94 -8.19 1 * 8 4  - 1 D . I D  
AVE QUARTZ I TE F I NLAND -2902 -12.13 4 $ , 7 9  5.94 
AVE S A N D ~ T U N E  - 3  122 - 7 , 0 8  1.2 139 1 ~ 5 9  - % * B I  
AVE SVBGRAYWACKE $, , 30 -5 .31  1 9  1,157 1 , 98 
AVE DIATOM OOZE -115~12 -4,72 ~2 * 25 1q55 m i * U 1  
BVE AKKQSE 1824 - 8 4 * 9 4  i * O O  $152 -%0,1O 
AVE ~ r s s t s s ~ ~ ~ r  SILT -1,Qt -5,66 4, , 01 1.49 ~ $ 9 8  
AVE ~ R A ~ W A C K E  2,17 -2.83 g.26  I s 3 1  m l c Q i  

AVE RABI  OCAR I AN OQZE - 1 . 61  -2 ,57  1*19 1q27 2 * 9 7  
PALEZOlC SHALES -1 147 -3  40 1 t 53 1.27 1.98 
AVE BLUE F4UD 1.49 -3.86 a .41 1 25 1.98 
AVE SHALE -1 8 15 13t27 & 1 4 4  1 t 2 4  2 , 9 4  
GLACIAL GLAYS 1.36 -2.43 S . 4 3  1 .24  l , , *8  
AVE TERRIGENBUS MUD 1 .49  ~3 8 69 1 * 6 2  1122  1 . 9 8  
CLAYS AND SOILS - 5  t 24 -2 * 97 1.39 l , 1 9  *I L OJ. 
MESO AND CENOZOIC SHALES 2.1% -2 ,93 1,29 1&10 1,98 
AVE RED CLAY -!..I5 -4.25 . 47 1,07 1.98 
a * e + f *  EARTH METAMORPH.IC * * *a*  
METAQUARTZITES 1.18 -8149  1.1 * 29 1.60 .110,1D 
LEPTITES ANO HAELLEFLINTBS 1,98 ~ 8 . 4 9  %a16  1.47 -i.tlf 
QUARTZOFEbDSPATHIC GNEISSE 1, 98  -7.08 i s 2 6  1 * 45  aq98 
PLUTONIC GNEISSES 2e17 - 7 - 0 8  1 c 29 1B40 - I Q e l Q  

A V E  M I C A  SCHIST FINLAND L . 6 7  - 4 . 7 2  l.44 1+3? *$*91 
AVE PHECAMBRIAN FINLAND 1 - 9 2  -5 .08  i t 2 9  2.36 -la01 
MICA SCHISTS NORWAY - 2  t 24  52 @ 50 1.33 1.36 *lQ,$.O 
TWO-MICA GNEISSES 1 . 9 2  -4 .72  1 .45  1.35 w t a . 1 ~  
MICA SCHISTS (1) 3 9 12 ~ 4 * 2 5  1-56 1 * 3 4  -1101 
KINZIGITES FINLAND 1 * 55 - 2 . 9 3  1 * 3 9  1 ,32 wl.O1 
SLATES ( 2 )  1 . 6 7  - 2 . 7 4  l a 5 1  l e i19 -10,10 
ROOFING SLATES .-I t 24 -9,31, l S 6 8  I t 2 9  *10,18 
MICA SCHISTS ( 21  -ieQ1 -3e15 I, t 67 1.29 0 1 Q e 1 D  
M I C A  SCHISTS ( 3 )  1.18 -3 1.15 1955  1 .28 ; 1 c 9 8  
PHYLLlTEd NORWAY -1 v 07 -3,86 1 * 7 6  1.27 - l O * l O  
AVE PHECAMBRIAN CANADA 2 * 2 9  m4.72 1 * 48 1,27 w I O * l O  

SLATES AND PMYLLlTES -1 * 24 - 2 . 9 3  1 - 7 9  1.23 .*I.QeIO 
SLATES ( 2 1  1 .05  -2 .93 1 .57 1 * 2 3  - t r D i  
PRECANBHIAN SLATES -1 . 24 -3 .15 1 e 61 1e20  1 e 98  
PHYLLI TkS I t 2 4  92 t 93 I, * 80 I t 1 9  1.98 
AMPHIBOLITES ( 1 )  1.80 -1 .21  1.37  I,OQ a , o s  
AMPHIYOLITES ( 2 )  Ie80 -1.23 1 45 1.00 -10110 
ECLOG 1 T t S  1.55 1305 1.26 -1102 * 1 9 * 1 0  
* f ig%* METEORITES * a * * *  
AUBH I I ES -1 122 4 .23  -17.12 1,O6 - 4  4 1  

AUG 14 







aoo 
187  
104 
127 
211 
212 
i o a  
509  
110 
111 
1i2 
101 
102 
103 
105 
128 
129 
235, 
106 
135 

* i t *+ *  GENERAL ~ O B O *  

P E R I D Q T I T E [ U L T R A - B A S K  ROC 
CRUST 
CKUST 
HCP AVE IGNEQUS 
CONTINENTAL CRUST 
OCEANIC CRUST 
BASALTIC ACHONORITE 
OCEANIC TWOLEl I l 'E  BASALT 
ALKALI OLIVINE BASALT 
AVERAGE CWONRRITE 
AVERAGE ACHBNORITE 
BASALTIC ROCK ( B A S I C  R O C K )  
INTERMEDIATE ROCK 
GRANI r I C  ROCK 
SHALE 
HCP A V E  SHALE 
HCP A V E  SANDSTONE 
HCP A V E  SEDIMENT 
CHONDRITES 
COSMIC ABUNDANCE 
* # * a *  EARTH IGNEOUS B * G * *  

CALC ALKALI RHYOCIPES 
RHYOL I TES 
CALC ALKALI GRANITES 
GRANI TES 
S I L X C I S  IGNEOUS ROCKS 
GRANDJOHITES(1)  
G R A N D I O H I T E S ( 2 )  
PLUTONIC XGNEOU8 
CORD APP IGNEOUS 
ANDESlTE$(lI 
AVE I(;NEOUS 
O I O R I T E S  
INTERMEUIATE IGNEQUS 
ANDESITES( 2 )  
PARENTAL CALC ALK MAGMAS 







3 , 8 4  
4,6j 
3,45 
3 - 7 4  
3 . 3 4  
4 - 5 8  
L 1 6 3  
6.14 
2 . 4 2  
4,236 
1 - 4 7  

$ 5 3  
* 00 
. a 0  

Oil 
* O t !  
* OC3 
* Dt? 

H ,  9 2  
9 - 8 0  

1 4 , 13 13 
* o u  
* B r i  



R A T I O ( l 1 r N U M E R  
R A T I O ( l ) r O E N O M  

R A T I  0 (  2 1 r NUMER 
R A T l O ( 2 )  r O k N O M  

R A T I O ( 3 )  r NUMER 
R A T I U ( 3 ) , D E N Q M  

R h T I 0 ( 4 ) r N U M E R  
R A T I Q ( 4 ) r D E N O M  

RATIO(5 ) rNUMER 
RATI O( 5 1 r DEMOM 

9*%0+ GENERAL *as*+ 
PERXDQTITE(U1TRA-BASIC ROC 
CRUST 
CRUST 
HGP AVE IGNEOUS 
CONTINENTAL CRUST 
OCEANIC CRUST 
BASALTIC AGHOMDRITE 
O C E A N I C  THOLElITE BASALT 
ALKALI ohlVIME 08SACT 
AVERAGE CHONURITE 
AVERAGE ACHQMDRITE 
BASALTIC  ROCK ~ ~ A S I C  R O C K )  
INTERMEDlATE ROC# 
G R A N I l l C  ROCK 
SHALE 
HCP AVE SHALE 
MCP AVE SANBSTQNE 
HCP AVE SEDIMENT 
CHONDRXTLS 
C O S M I C  ABUNDANCE 
s*s*e EARTH IGNEOUS a**** 
CALC ALKALI RMYOLITES 
RWYOL I TE8 
CALC ALKALI GRANITES 
GRANITES 
S I L I C f S  IGNEOUS ROCKS 
G R A N D I O R I T E S ( 1 )  
C R A N D I O H I T E S ( 2 )  
PLUTONIC IGNEOUS 
CQRQ APP IGNEOUS 
A N D E S I T E S ( 1 )  
AVE IGNEOUS 
D l O R I T E S  
INTERNEDI4TE IGNEOUS 
A N D E S I T E S ( 2 1  - 5 PARENIAL CALC ALK M A G M A S  



S K 

# * I t i  : -  L f 4 - P L  A 1 " /  2 

\ s i r  I * I t  ' li * > 1 171 
ilidi: ; 0 - b  1 1 4  / * * 5 5  : -5) 
: i i i s ~  -- - i i  -5 .I i - 8 2  
PI-0 1 l s IJ r d A i & ;  c h , J i  -.;. 2 4  
:+$4Fig- 7 1 ~ k i f [ l ~ j C -  -r 6 * 5: -2 74 
A\+- f i i . . T ~ , ~ i , ! r  -+a h i - l  I i, * r d2 - 1 % b 7  i b i :  

NQR IL !  .+l ?< 3 a . x ; ) ; ~  IS 24.53 -3 -5t' 
PERT :s;T i T t  hi(.ihiliLFS ; h 6 A S Q  -(:A. 34 -lz56 92 
LjLT412- l A F  I I, 1 f>\kt I \JF -:.6 , 3.5 -2.24 
PkR 1 Q*! ! Tr-S - >  s < , s <  - 7  8 5  
f iC IMI  I !  s: i?AbYi -,* h ,  33 - * 1 5 h .  92 
DUN TI !- S ( AI(JCA L>LI]:> ) - L  - 3 , j S  -I 5 . 6 9  
ic::.a: EbRTH > : t i l l  YLRli;ji'u ti;: :so:. 
A\IE ia;,TYQlJUfiZ2 iiITE - 5 - 1 5 . 6 9  
A V E  f i i i i , . " f Z  l T L  F IN LA-.^? - i i ? s 3 3  j -'l5 
A\iE ,;ilN_iC;4T:_tkl - r  & * ,  33 - 4  ,21 
4VE j'iB:,i-:&Y Wdi,Kr- - ' 6  ,33  - 2  #05 
AVE 3: 11 1011 13CLfL_ -Pi5 * 51% - 1 5 , b c j  
AVE] ilfiK2SE- -, , , I ,  33 - -7 

3.63 
A V E  ~ , ~ s f b b ~ ? r l  SILT - ,/ & , 3 J 3 e 5>v 
A V E  L < ~ " L ~ A C K E  - ~ f i  e 3 3  1.34 
A V E  G-%ii ' :?LAM I b v O r i Z t  -- s; t? , 3 3 I S O H  
F"ALi:Z< l i' 5!-4A~cL - ; h , 3 3  2*42 
AVF_ ELl.ii 1+1ijD r C . 3 3  i a O d  
B V E  > ' ; A L E  -- +-' c . $3 2 - 2 5  
GkAt . l  *k, CLAY", -r"k ,293 2 . f ; l  
A V t  T i  241 GE'u',?IS jiLt_iD - i  h .  3-5 -1,443 
G b A  f T T  APd".ji ":jUli-5 - - i a , J <  1+47 
r"it13 . :)idu C E N ' j f  ij l C SI-ihi-ES - Z P ,  31 P q 8 t 3  
A\/E ~-?.'"-i) C L A Y  - ~ k , j 3  1- ' 2 1  
42 %$ ' Z  .+. ?% 9 7 kj ;I!= 7 %> (j @ bJ 1 % $: 2: 't a,: 

MEPLite 4i.Ti:; T f 5  > k e 3 3  I a 6 6  
bt&"T 1 I I-<< ak12 Q i ' l t i ~ E ~ ~  1x7 AS -26 * 3.5 2.36 
G U A ' r T  10" F,061'PTi- i  l C 5 \ r  I I S E  c b , 3 3  "2 42 
PLLJ i 0 \I 1 L G h k  l 5SL1? - : 0 + . . 5 5  1 . 1 4  
A\/F i""ii C A  5ii;bIl a1 I- I NLbr\i\ l l '  -ct e 5-q 2.42 
A V E  F 4 ~ ~ 4 b ! b i ; ' 1  4!\1 F I N ~ - L ~ ~ L )  C, t j  3-2 7,29 
~~~p --,cri-; G ~5 1;3~<#:;\'/ -, &. 33  2.42 
TWc-nQi [LA G t b  1 \>JkS  i b ,  33 3 . 2 7  
1 .  l "  - 3 1 - I  6 , 3 3  2 . 1 1  
klk:; 1 - 1  i F:5 F'>.JL.AIJF\ -_ ik jV35 2-04 
% i _ ~ ! k  ( 1 "  r.*. -3.5 2. %rj 
?UOr 11  L -i~*ii 1 k - L " ,  1 7  3.49 
l J i ~ e , A  -c-inai s - ,b ,  3 5  3 eti 
rl i C J  a :> rs - , % (  . 3 i  Z s 3 h  

- , f 7 * ~ s l  4,OQ 
s i ; ~  2 ;_%,u"i'd; ii% t-bb,gtat::a - ii- p. -5- ,sa 
 LA I L  % , . L q ,  , d r ~ f ' ~  L i  [I-:  - - , ~ * , ' j  a,;\. 
is l JL.4 1 1  '- ! . 0 , . _ 4 *  ,-*4? 
[ J i jp  i 2 # . i  T "I ' * 5 "  3 4, 1 

c * - * -> P 

l \ l b  1 . 1 ;  , , 5 4  " 6 

!'s,'ip " *..i; I i -, / > *  5 %  ; "4 
I'CL iil .  I 2 - 6 . 5 -  "',25 
> .<$. * ; < t m  T L  W; 1 I ,, j[ i  ; L 7 * 1 -  ;i. 6 ;  
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1 <)flt f 1 , i;dt> C r I t  * C  - - a = :  i -*3,zs l  + 
-> 4 1- % - r l i  i ~3 - i i  , 17 7 ~ i m , 5 ~  
, i { ' d  r 1 ' * / J P  ii i i I *  :j - % - i * f ? h  
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F f l r  j l f  - 1 * 2 3  -26 * 7 i *  " 1 5  -4. 3t 
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4i*iP1:i , , r ii. I 'it. 3 - - 5 ~ .  -6 - 54 - 5 , 5 0  -330 .58  
H Y P i  63: >..ii_Fdt 3 ~ ) ~ d l > %  1 i : T  , - .  "4: - -14 .2 ;  - 3 , g 7  - 2 0 , 9 i 5  
U S E I b !  7 %  5 - 5  - l a a , 9 Z  - 7 , 4 5  ~ 2 5 ~ 6 2  
EN$!& l i E  6 H ~ " d i j " J i E r ~  i 4 , 8 3  1 4 - 2 7  - 6 . ~ 1 7  - 2 8 , 4 3  
(]KO 1 i\ , j ' irt f CI-~F-<'!VI, lTk._S - 1 5 . 6 9  - 3 . 1 0  - 2 0 . 9 6  
I ,AV'L ; i i i \ i ‘r  r q t L l i  G G P T  .-' , o 4 - 7 . 8 5  - 2 . 3 4  - a a , u ~  
FHC?VZ l i -  CI-Il-4:- JLI ; I~ES / , a h  - - 15 .69  -,5,L5 - 2 0 , 9 6  
S ~ B ~ ~ ~ ~ P L - ~ V K ~ ~ S ~  - i ? . t i  - L b B , 9 2  - 2 2 8 . ~ 7  -25Q15d 
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APPENDIX I1 

ELEMENT RATIOS IN VARIOUS ROCKS 



- - 

oswn* GENERAL i++&++b+ 

100 PERIDOTfTE(UhTRb*SASIG ROC 
187 CRUST 
L O 4  CRUST 
127  HCP A Y E  lGNEBUS 
211 CQNTINENTAL CRUST 
212 OCEANIC CRUST 
108 BASALTIC ACHONDRITE 
i09 OCEANIC THOLEIXTE BASALT 
1 1 D  ALKALl OhlV INE BASALT 
1 1  AVERAGE CHONQHXTE 
112 AVERAGE ACHONORITE 
2CIk BASALTIC ROCK CBASIC R O C K )  
1.02 INTERMEOXATE ROCK 
103 G R A N I T I C  ROCK 
105 SHALE 
$28 HCP AYE SHALE 
128 MCP AVE bANQSTONE 
131 HCP AUE SEDIMENT 
IOQ CHONDRITES 
135 CBSMI C ABUNDANCE 

o+94ka EARTH IGNEOUS 4$3i++a 

1 CALC ALKALI RHYOblTES 
2 RHYOLITE8 
3 CACC ALKALI GRANITES 
4 GRANITES 
5 SILICIS  IGNEOUS ROCKS 
b GRANDIORITES(1) 
7 GRANDfOHITES(2) 
8 PLUTONIC  IGNEOUS 
9 CORD APP IGNEOUS 

_ O  ANDES I TES ( 1) 
i d  AVE IGNEOUS 
12 DIOHZlES 
1 3  INTERNEBIATE IGNEOUS 
14 ANOESITES(2)  
15 PARENTAL CALC ALK MAGMAS 

- - ---- - - 
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AVE TWOLEITE 1 7 * 7 9  
BASAL T S 19.13 
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MAFlC IGNEOUS 1 4 , 7 2  
AYE QLIVINE BASALT P A C I F I C  16 .36  
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100 PERIDOf l fE (ULTRA~BAS1C ROC 
$07 CRUST 
104 CRUST 
127 HCP AVE IGNEOUS 
211 CONTINENTAL CRUST 
212 OCEANIC CRUST 
ias B A S A L T I C  ACHQNDRITE 
A09 OCEANIC PHOLEl ITE  BASALT 

- 1 0  ALKALI OCIIVINE BASALT 
111 AVERAGE CHONBRlTE 
112 AVERAGE BCHONDRlTE 
$ 0 1  BASALTIC ROCK (BASIC R O C K )  
102 INTERMEDIATE ROCK 
if33 C R A N I l l C  ROCK 
105 SHALE 
128 HCP A V E  SHALE 
1 2 9  HCP AVE SAND$TONE 
131 HCP AVE SEDIMENT 
106 CHONORITES - 
3 COSMIC  4BUNDbNCE 

EARTH IGNEOUS a n u f i *  
1 CALC ALKALI RMYQLITES 
2 , RMYQtITE$ 
3 CALC ALKALI GRANITES 
4 GRANITES 
5 SlLIClS IGNEOUS ROCKS 
6 G R A N D l O R I T E S ( 1 )  
7 GRANDIOHITESf2)  
8 PLUTONIC IGNEOUS 
9  CORD APP IGNEOUS 

1 0  ANDESITES(1)  
1 AVE IGNEQUS 
1 2  BIORITES 
13 INTERMEUXATE LGNEOUS 
1 4  ANDESITES(2)  
15 PARENTAL CALC ALK MAGMAS 
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THE AVCO DEFENSE A N D  INDUSTRIAL PRODljCTS GROUP 

The Avco Defense and Industr~al Products Group, of which the hlectronlcs Div~sion 1s a key member, 1s comprised 
of the hve Divicj~onrs illust~ated on this page The combined cftorr of t h ~ s  Group offers a wide degree ol flexibtlrfy and 
overall capability for advanced research, des~gn, developn~ent, and productton of defense and lndustrlal products 

ELECTRONICS D I V I S I O N  AEROSTRUCTUWES 
DIVISION 

Avco Electronics plays a vital role in National Defense 
and Industrial progress. This Division possesses the 
technical capability and modern facilities to volume produce 
complex electronic systems and components. 

In the fields of Advanced Technology, Systems Engineering, 
Tactical Communications, and Field Engineering, the Avco 
Electronics Division has a history of successful defense pro- 
grams including radar, bomber defense, ground and airborne 
communications, data handling, air traffic control, infrared 
detection, electro-optical surveillance, missile and satellite 
command control systems, and missile range support opera- 
tions. 

ORDNANCE D I V I S I O N  

The Ordnance Division has a complete facility for electrical, 
mechanical and materials research development engineering, 
an up-to-date high volume production facility and a field test 
site for static and dynamic testing of certain weapons, explo- 
sives and ammunition. Ordnance devices and systems include 
arming and fuzing systems, ammunition and warheads, tac- 
tical weapons, and ordnance instruments. 

Some of these product areas include the Polaris nuclear adap- 
tion kit, the Titan radiation fuzing system, mortar, and im- 
pact fuzes, Tactical Atomic Demolition Munitions and armor 
piercing rounds. The Ordnance Engineering Group has ex- 
tensive background in fuzing, lethality studies, ballistic match- 
ing, fragmentation, penetration, velocity and stability, static 
and dynamic balancing. 

LYCOMING DIV IS ION 

This Division produces reciprocating aircraft engines, gas 
turbine engines, missile components, rocket chambers, engine 
components, ground suppor"cquipment, constant speed 
drives, gears arrd rnachined parts, heat treatirrg and plating, 
hardened and ground precision parts, and hydrofoil vehicles 

Production of aircraft engines and missile components has 
been accelerating at the Lycoming Division. Lycoming's 
growth in the missile field includes production of re-entry 
vehicles for the Titan, Atlas, and Minuteman ICBM's, as well 
as components for the Polaris, Talos, and Nike-Hercules 
missiles. 

This Division directs major effort in the design, development, 
and manufacture of large light-weight structures such as radar 
antennas, airframe components, missile and space vehicle 
components, and ground support equipment. The plant 
houses complete laboratories, environmental facilities, manu- 
facturing test equipment, and large production areas. It is 
located adjacent to the Nashville Airport, providing ready 
accessibility to aircraft flown in for complete overhaul or 
repair. 

The Division provides the U.S. Air Force with tail assem- 
blies for the C-130 turboprop transport and wing box beam 
assemblies for the C-14i tirbofan jet transport, produces 
structures for the Saturn rocket booster, manufactures rocket 
nozzles and chambers for missiles and space boosters, and 
builds a number of components for classified defense and 
space projects. 

RESEARCH & 
- -  ADVANCED 

DEVELOPMENT 
D I V I S I O N  

RAD specializes in research and development of missiles, 
satellites and space probes, high temperature materials, ad- 
vanced propulsion systems, rocket nozzle development, envi- 
ronmental test systems and equipment, re-entry telemetry 
systems, electric arc plasma generators, and medical science 
technology. 

Work on advanced ICBM and space vehicle re-entry problems 
continues at RAD accompanied by increasing diversification 
into other areas of interest. Technical progress has been 
made in the many fields associated with re-entry and the 
division is doing advanced work on the Titan and Minuteman 
re-entry vehicles under Air Force contracts. 

Scientific advancements through basic research is the key- 
note at Avco's ADVANCED RESEARCH LABORATORY 
in Everett, Massachusetts. A team of highly skilled Scientists 
is enhancing our knowledge of space technologj, high lem- 
perature gas dynamics, aerodynamics, I-e-entry physics, 
satellite recovery methods and electric proprrlsion for space 
vehicles. Avco's BAY STATE ABRASIVES DIVISION ha3 
precision abrasive and ceramic manufacturing capabilities. 
MEREDITH-AVCO, INC. is engaged in the rapidly growing 
community antenna television business. Avco's NEW IDEA 
DIVISION has made outstanding contributions in the de- 
velopment of modern farm equipment. Avco has two wholly 
owned subsidiaries - the AVCO BROADCASTING 
CORPORATION and MOFFATS LIMITED in Canada, a 
leading supplier of electric home appliances. 




